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ocation decisions are frequently subject to dynamic aspects such as changes in customer demand. Often,

flexibility regarding the geographic location of facilities, as well as their capacities, is the only solution to
such issues. Even when demand can be forecast, finding the optimal schedule for the deployment and dynamic
adjustment of capacities remains a challenge, especially when the cost structure for these adjustments is complex.
In this paper, we introduce a unifying model that generalizes existing formulations for several dynamic facility
location problems and provides stronger linear programming relaxations than the specialized formulations. In
addition, the model can address facility location problems where the costs for capacity changes are defined for
all pairs of capacity levels. To the best of our knowledge, this problem has not been addressed in the literature.
We apply our model to special cases of the problem with capacity expansion and reduction or temporary facility
closing and reopening. We prove dominance relationships between our formulation and existing models for the
special cases. Computational experiments on a large set of randomly generated instances with up to 100 facility
locations and 1,000 customers show that our model can obtain optimal solutions in shorter computing times
than the existing specialized formulations.
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1.

Introduction

the private and public sectors to determine locations
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Dynamic facility location is about deciding where and
when to provide capacity to satisfy customer demand
at the lowest cost. This demand is rarely stable;
rather, it increases, decreases, or oscillates over time.
Therefore, facility capacities often have to be adjusted
dynamically. Many variants of dynamic facility loca-
tion problems have been studied, suggesting different
ways to adjust capacities throughout a given planning
horizon. The most common features include capac-
ity expansion and reduction (Luss 1982; Jacobsen
1990; Peeters and Antunes 2001; Troncoso and Gar-
rido 2005; Dias, Captivo, and Climaco 2007), tem-
porary facility closing (Chardaire, Sutter, and Costa
1996; Canel et al. 2001; Dias, Captivo, and Climaco
2006), and the relocation of capacities (Melo, Nickel,
and Saldanha-da-Gama 2006). Mathematical models
that include such features have been applied in both

RIGHTS <

484

and capacities for production facilities, schools, hos-
pitals, libraries, and many other facilities.

Facility location decisions aim to strike a balance
between the fixed costs to supply capacity and the
allocation costs to serve the demand. The latter often
correspond to transportation costs to deliver products
or provide services to customers. The ratio between
these two types of costs has a strong impact on the
solution and the difficulty of solving the problem
(see, e.g., Shulman 1991; Melkote and Daskin 2001).
In dynamic facility location problems, a detailed rep-
resentation of the transportation costs affects not only
the facility locations but also their capacity through-
out the planning horizon, as capacity tends to follow
the demand along time.

Regarding the fixed costs to provide the capacity,
many studies acknowledge the existence of economies
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of scale (Correia and Captivo 2003; Correia, Gouveia,
and Saldanha-da-Gama 2010). Previous work consid-
ered economies of scale mainly for the construction
and production costs, but the costs for adjusting the
capacities of the facilities have commonly been mod-
eled in less detail. However, the latter is necessary
to ensure a fair representation of the cost structure
found in practice. The costs to adjust capacities often
depend not only on the size of the adjustment but
also on the current capacity level. This is true in a
large class of applications, especially in transporta-
tion, logistics, and telecommunications, where addi-
tional capacity gets cheaper (or more expensive) when
approaching the maximum capacity limit.

In this work, we introduce a very general dynamic
facility location problem, referred to as the Dynamic
Facility Location Problem with Generalized Modular
Capacities (DFLPG). The problem allows modular
capacity changes subject to a detailed cost struc-
ture and is modeled as a mixed-integer program-
ming (MIP) formulation. Because of its generality, this
model unifies several existing problems in the liter-
ature. The cost structure used in the model is based
on a matrix describing the costs for capacity changes
between all pairs of capacity levels. We are not aware
of any other work dealing with facility location with
a similar level of detail in the cost structure.

Our study is motivated by an industrial project
with a Canadian logging company that must locate
camps for workers involved in wood harvest activi-
ties while optimizing the overall logistics and trans-
portation costs (Jena, Cordeau, and Gendron 2012). In
this problem, the total capacity of a camp is repre-
sented by its number of hosting units, and additional
units provide supporting infrastructure. As the rela-
tion between the number of different units is nonlin-
ear, the costs for capacity changes are described in a
transition matrix.

The contribution of this work is threefold. First, we
introduce a general dynamic facility location model
that comprises a large set of existing formulations.
Second, we analyze the linear programming (LP)
relaxation bound obtained by our model, showing
that it is at least as strong as the LP relaxation bound
of existing specialized formulations. Third, we per-
form a computational study on a large set of ran-
domly generated instances, showing that our model,
when solved with a state-of-the-art MIP solver, can
obtain optimal solutions in shorter computation times
than the specialized formulations.

The paper is organized as follows. In §2, we present
a survey of the relevant literature. Then, §3 introduces
a linear MIP formulation for the DFLPG and shows
how this model can be used to represent two impor-
tant special cases. To compare the resulting models
with alternative formulations, §4 derives specialized
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formulations for the two special cases, based on exist-
ing models from the literature. We identify a weak
point in one of the existing formulations and suggest
a set of valid inequalities to make it as strong as our
model. Dominance relations are proved between all
formulations, showing that our model is at least as
strong as each of the specialized formulations. The
presented models are then compared by means of
computational experiments in §5. Conclusions follow
in §6.

2. Literature Review

Most dynamic facility location problems can be seen
as multiperiodic extensions of classical location prob-
lems, such as the Capacitated Facility Location Problem
(CFLP). However, dynamic facility location problems
commonly involve further extensions. As pointed
out by Arabani and Farahani (2011), the notion
of what dynamic means may differ when dealing
with different areas of facility location. Its defini-
tion thus strongly depends on the application context.
For example, school capacities may be increased or
decreased to meet demographic trends (e.g., Peeters
and Antunes 2001), terminals in telecommunication
networks may be installed and removed to adapt
to changes in data traffic and costs (e.g., Chardaire,
Sutter, and Costa 1996), and hospitals may relo-
cate ambulances to cope with unpredictable demand
(e.g., Brotcorne, Laporte, and Semet 2003). Owen and
Daskin (1998) review works that treat either dynamic
or stochastic facility location problems. Farahani,
Abedian, and Sharahi (2009) deal with dynamic
aspects of facility location problems and propose sev-
eral classification criteria. A book chapter by Jacobsen
(1990) dedicated to multiperiod capacitated location
models thoroughly discusses models that allow capac-
ity expansion. Luss (1982) focuses on capacity expan-
sion and reviews the literature and applications in the
context of problems with a single, two, and multiple
facilities. Although not explicitly focusing on dynamic
aspects, many other works introduced classifications
for location problems that often also apply to fea-
tures that can be found in dynamic location problems.
These include, among many other studies, the works
of Hamacher and Nickel (1998), Owen and Daskin
(1998), Klose and Drexl (2005), Daskin (2008), and
Melo, Nickel, and Saldanha-da-Gama (2009).

The choice of the facility type or size has also been
considered in several works. In particular, Shulman
(1991), Correia and Captivo (2003), and Troncoso and
Garrido (2005) consider such choice, which implies
different capacities and costs for each facility type.
The last authors apply the model to the forestry sec-
tor, where facilities of different sizes may also be
expanded. Dias, Captivo, and Climaco (2007) focus
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on modular capacity expansion and reduction. Wu,
Zhang, and Zhang (2006) present a facility location
problem in which the facility setup costs depend on
the number of facilities placed at a site. To represent
economies of scale, all of the cited works use binary
variables to distinguish different facility sizes. Capac-
ity level changes consider only the amount of capacity
added or removed. However, the previous capacity
level is not taken into consideration. Some authors
such as Harkness (2003) also recognize the importance
of inverse economies of scale, where the unit price
increases as the facility gets larger.

To dynamically adjust capacity to demand changes,
the best choice depends on the demand forecast and
the costs involved in capacity changes. For example,
if capacity is leased, it may be possible to terminate
a leasing contract at any time. In other situations, it
may be beneficial to temporarily close a facility to
avoid high maintenance costs. This may be appro-
priate when demand temporarily decreases, but it
is likely to return to its previous level afterward.
The closing and reopening of facilities may be par-
tial or complete. Previous studies focused mostly on
temporarily closing entire facilities. Among the sug-
gested models, some are limited to a single clos-
ing and reopening of each facility, whereas others
allow repeated closings and reopenings throughout
the planning horizon. The uncapacitated facility loca-
tion problem presented by Van Roy and Erlenkotter
(1982) and the supply chain model of Hinojosa et al.
(2008) allow one-time opening or closing of facilities:
new facilities can be opened once and existing facili-
ties can be closed once. Chardaire, Sutter, and Costa
(1996) and Canel et al. (2001) propose formulations for
opening and closing facilities more than once. Both
works use binary variables to represent the state of
the facility. The objective function contains a bilin-
ear term to represent a state change from open to
closed or vice versa. A linear formulation for a sim-
plified version of this problem, treating only a single
capacity level, has been proposed by Dias, Captivo,
and Climaco (2006). Binary variables with two time
indices indicate the period throughout which a facil-
ity is open. The cited works interpret facility closing
either as temporary (i.e., the facility still exists, but
its capacities are temporarily unavailable) or perma-
nent. In most cases, maintenance costs for temporarily

(b)

I

closed facilities are low and can therefore be ignored
in the model. Most of the existing formulations there-
fore do not explicitly distinguish temporary and per-
manent facility closing.

When the customer demand permanently changes
in a certain region and is not likely to return to its
previous level, one may want to expand or reduce
the facility capacities to permanently adjust to these
new conditions. Luss (1982) observes that models for
capacity expansion can be classified into two cat-
egories: capacity expansion at a single facility and
capacity expansion via a finite set of projects, each
holding a certain capacity. The first category includes
models that allow one facility at a location and
increases or decreases of the available capacity along
time. The second category consists of models where
multiple facilities are allowed in the same location,
each specified by a time interval (a capacity block)
of production availability. Figure 1 illustrates both
classes. The first class is shown in panel (a), where
capacities at the same facility are either increased or
decreased. The second class is illustrated by panels (b)
and (c), representing two extreme configurations of
the capacity blocks. Any configuration between these
two is also feasible for the second class.

Models in the first category include those of Melo,
Nickel, and Saldanha-da-Gama (2006) and Behmardi
and Lee (2008). Both works model capacity expan-
sion and reduction by relocating capacity from or
to a dummy location. The authors of the former
work model capacities as a continuous flow, but
demonstrate how to link the flow to binary variables
to restrict capacity changes to modular sizes. Mod-
els in the second category do not allow the capac-
ity modification of a facility once it is constructed.
However, they allow multiple facilities of different
sizes (capacity blocks) at the same location, which
is equivalent to the adjustment of the total capac-
ity sum along time. Examples for this class include
the works of Shulman (1991), Troncoso and Garrido
(2005), and Dias, Captivo, and Climaco (2007). More
restricted types of capacity expansion or reduction
have also been presented. In the work of Peeters and
Antunes (2001), either a facility expands or decreases

(a)
Qg
T >
go
O 1 1 [l | 1 [l | |

1 1 I I 1 I 1 I

1 2 3 4 5 6 1 2
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Figure 1
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Capacity Expansion/Reduction by Use of a Single Facility (a), Horizontal Capacity Blocks (b), and Vertical Capacity Blocks (c)
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its capacity throughout the entire planning horizon. 2 Yinig-n = 2_ Y

Capacity expansion and reduction at the same loca- hel LeL

tion is thus not allowed. Vie], VleL, VteT\{1}, (4
. . D Yua=1 VjeJ, ©)

3. Mathematical Formulation hel

In this section, we give a more formal description of X >0

the DFLPG and introduce a MIP model for the prob-
lem. We also explain how the different cases described
in §2 can be modeled as a DFLPG.

3.1. DFLPG Formulation

We denote by | the set of potential facility locations
and by L=1{0,1,2,..., q} the set of possible capacity
levels for each facility. We also denote by I the set
of customer demand points and by T ={1, 2, ..., |T|}
the set of time periods in the planning horizon. We
assume throughout that the beginning of period f +1
corresponds to the end of period t.

The demand of customer i in period ¢ is denoted
by d,,. The cost to serve one unit from facility j oper-
ating at capacity level I to customer i during period ¢
is denoted by g;;,. This term is typically a cost func-
tion for handling and transportation costs, based on
the distance between customer i and facility j. The
capacity of a facility of size I at location j is given
by u; (with u;, =0). The cost matrix f;,, describes
the combined cost to change the capacity level of a
facility at location j from [, to I, at the beginning
of period ¢t and to operate the facility at capacity
level I, throughout the period. Furthermore, we let I/
be the capacity level of an existing facility at loca-
tion j. The constant I’ is 0 if location j does not possess
an existing facility at the beginning of the planning
horizon.

To formulate the problem, we use binary vari-
ables y;,, equal to 1 if and only if the facility at
location j changes its capacity level from I, to I, at
the beginning of period t. The allocation variables x;;,
denote the fraction of the demand of customer i in
period t that is served from a facility of size I located
at j. Based on these definitions, we define the follow-
ing MIP model, referred to as the Generalized Modular
Capacities (GMC) formulation:

(GMC) min lZ 2.2 Z,ﬁ-‘alszryﬁ]azs

je] hell,elteT
+ T F guditin 8
iel je] leL teT
st. ) > xy=1 Viel, VieT, (2)
jel leL

> dirx:'j!r <X Uil i1t

iel Lel
Vie], VleL, VteT, (3)
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Viel, Vje], VleL,VteT, (6)
Y €10,1} Vje], VI €L,
VI,eL, VteT. (7)

The objective function (1) minimizes the total cost
for changing the capacity levels and allocating the
demand. Constraints (2) are the demand constraints
for the customers. Constraints (3) are the capacity
constraints at the facilities. Constraints (4) link the
capacity change variables in consecutive time periods.
Finally, constraints (5) specify that exactly one capac-
ity level must be chosen at the beginning of the plan-
ning horizon. Note that the flow constraints (4) fur-
ther guarantee that, at each time period, exactly one
capacity change variable is selected.

Valid Inequalities. To facilitate the solution of the
GMC, we may additionally use two types of valid
inequalities. The Strong Inequalities (SI) used in facil-
ity location and network design problems (see, e.g.,
Gendron and Crainic 1994) are known to provide a
tight upper bound for the demand assignment vari-
ables. These inequalities can be adapted to our model
as follows:

X < ) Ypu Viel, ¥Vje], ¥leL,VteT. (8)
Lel

The SIs may be added to the model either a priori or
in a branch-and-cut manner only when they are vio-
lated in the solution of the LP relaxation. The second
set of valid inequalities is referred to as the Aggre-
gated Demand Constraints (ADC). Although they are
redundant for the LP relaxation, adding them to the
model enables MIP solvers to generate cover cuts that
further strengthen the formulation

222 Ui, Yir,e = > d, VteT. &)
jel el el iel
3.2. DFLPG-Based Models for the Special Cases
We now explain how two important special cases can
be modeled with the GMC formulation: first, facility
closing and reopening and, second, capacity expansion
and reduction.

The first problem considered here allows the con-
struction of at most one facility per location. The size
of the facility is chosen from a discrete set of capacity
levels. Existing facilities may be closed and reopened
multiple times. Note that, in this problem, facility clos-
ing does not refer to permanent closing, but only to
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the temporary closing of a facility. We therefore dis-
tinguish costs for the construction of a facility, for
temporarily closing an open facility, for reopening a
closed facility, and for maintaining open facilities. As
in most of the previous literature, we do not consider
maintenance costs for temporarily closed facilities. We
denote this problem as the Dynamic Modular Capaci-
tated Facility Location Problem with Closing and Reopen-
ing (DMCFLP_CR).

In the second problem, capacities can be adjusted
by the use of a single facility at each location. At
each facility, the capacity can be expanded or reduced
from one capacity level to another. We assume that
an expansion of [ capacity levels always has the same
costs, regardless of the previous capacity level. We
assume the same for the reduction of capacities. We
denote this problem as the Dynamic Modular Capaci-
tated Facility Location Problem with Capacity Expansion
and Reduction (DMCFLP_ER).

In addition to the input data already defined for the
DFLPG, we define the following fixed costs to char-
acterize these two special cases:

* ¢ and cj; are the costs to temporarily close and

reopen a facility of size I at location j, respectively.
* ffi and f} are the costs to reduce and expand the

capacity of a facility at location j by I capacity levels,
respectively.

* F{ is the cost to maintain an open facility of size I
at location j throughout one time period.

For the sake of simplicity and without loss of gener-
ality, we assume that all of these costs do not change
during the planning horizon.

In the GMC, capacity level changes are represented
by the y,,, variables. These transitions from one
capacity level to another can be represented in a
graph, where each node represents a capacity level
and each arc a capacity level transition. To model the
special cases, we choose a certain subset of arcs, as
well as their corresponding objective function coeffi-
cients f; , ;. Note that, although the costs for the GMC
can be f)ased on a cost matrix, the costs for the special
cases are based on a cost vector. The cost coefficients
f 1,1t correspond to combinations of different opera-
tions, for example, the cost to expand capacity plus
the maintenance costs for the new capacity level.

For the problem variantinvolving facility closing and
reopening, we create an artificial capacity level [ for
each capacity level I € L\{0}. Capacity level ! repre-
sents the state in which a facility of size I is tem-
porarily closed. At each time period t € T and location
j € ], we may find different arc types y;;;, to model
capacity level changes (note that the cost for an arc
is usually composed of the cost to perform the capac-
ity transition and the maintenance costs for the new
capacity level):

1. Facility construction and capacity expansion.
The expansion of the capacity is represented by

RIGHTS <

an arc from capacity level [; to any other capacity
level I, > I,. If the arc represents a facility construc-
tion, then [, is 0. The capacity is thus expanded by
I, — 1, capacity levels. The cost for this arc is set to
Sitot = Ft,1y + By

2. Capac1ty reduction. The reduction of the capac-
ity is represented by an arc from capacity level /; to
any other capacity level I, < [;. The capacity is thus
reduced by [, — I, capacity levels. The cost for this arc
1ssett0fﬂ”—fﬂ 1,y tFi-

3. Maintaining the current capacity level. A facility
may neither expand nor reduce the current capacity
level. The cost of this arc is thus only composed of
the maintenance cost, that is, f;, ;= Ej if the capacity
level represents an open facility, f;a i, =0 if the capac-
ity level represents a temporarily closed facility, and
fioo: =0 if no facility exists.

4. Temporary closing. An open facility of size I; can
be temporarily closed; that is, it changes to capacity
level [,. The total cost is f;;,, =cj; .

5. Reopenmg a closed facﬂlty A temporarﬂy closed
facility of size I, can be reopened; that is, it changes
its capacity ]evel from I; to I,. The total cost for this
arc is —)':}'11_1?1s = c}h Ff?l

The DMCFLP_CR is represented by arcs of types 1
(for construction only), 3, 4, and 5. We denote the
resulting model as the CR-GMC formulation. The
DMCFLP_ER is represented by arcs of types 1, 2,
and 3. The resulting model is denoted as the ER-GMC
formulation.

4. Comparisons with Specialized

Formulations

We now present alternative formulations for the two
special cases. These formulations are adaptations of
existing models proposed in the literature. For each
problem, we present formulations based on two dif-
ferent modeling approaches, as presented in §2: loca-
tion variables with one time index and location vari-
ables with two time indices.

4.1. Facility Closing and Reopening
We consider models for the problem DMCFLP_CR.

4.1.1. Single Time Index Flow Formulation. This
model can be seen as an extension of existing dynamic
facility location problems (Shulman 1991). Flow con-
servation constraints such as those used in the relo-
cation model of Wesolowsky and Truscott (1975)
are adapted to model facility closing and reopen-
ing. The model is based on the following variables.
The demand allocation from facilities to customers is
given by x;,,. Binary variable s, is 1 if a facility of
size | is constructed at the beginning of period ¢ at
location j; binary flow variable y;;, indicates whether
a facility of size I is available at location j during time
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period ¢. Finally, binary variables v, and v}, are equal
to 1 if a temporarily closed facﬂlty at location j of
size | is reopened at the beginning of period ¢ and if
an open facility at location j of size [ is temporarily
closed at the beginning of period t, respectively. The
input data are as defined in §3.2. Note that certain
equations may include terms that are not defined for
a certain variable index; for example, index (t —1) is
not defined for ¢t = 1. Undefined terms are assumed to
take the value 0. The single time index flow formulation
(CR-1I) is given by

(CR-1I) min {ZZZ(ﬁs}-M +

jel leL teT

Q 0 0 c C
Ejyi + cjogy + ¢jio5)

+ Z Z Z z 8:'j?td:'£xf'}'fr } (10)

iel jeJ leL teT
st. Y x;, =1 Viel, VteT, (11)
je] leL
z dr'rxa'j?t = u;’a‘y}'ft

iel
Vie],VleL,VteT, (12)

Yie =Yjie—) + Spie + Oy — Oy
Vie],VleL,VteT, (13)

t t
)3 Vg < ) Vi
p=1 #=1
Vie],VleL,VteT, (14)
2.2 su<1 YjeJ, (15)

leL teT
1’;‘;‘;;20
Viel, Vje],VleL, VteT, (16)

Sites Vs Vi Y €40, 1}
Vie],VleL, VteT. 17)

The objective function (10) minimizes the total costs
composed by facility construction, maintenance of
open facilities, and facility reopening and closing, as
well as the costs to satisfy the customer demand.
Constraints (11) are the demand constraints. Con-
straints (12) are the capacity constraints. The flow con-
straints (13) manage the state of a facility of a certain
size, either open or closed. Constraints (14) ensure
that a facility has to be temporarily closed before it
can be reopened. Finally, constraints (15) state that at
most one facility can be built at each location.

The SIs (8) can be adapted by replacing the right-
hand side by y;;, and the ADCs (9) can be used by
replacing the left-hand side by 2 jef 2teL UitYjs-

4.1.2. Double Time Index Block Formulations.
Dias, Captivo, and Climaco (2006) presented a lin-
ear MIP model that allows the repeated closing and

RIGHTS <

reopening of facilities. The model uses binary deci-
sion variables with two time indices, one for the open-
ing and one for the closing of a facility. We extend
this model by adding the choice of different facility
capacity levels (note that we remove the constraints
that require a minimum availability of open facilities).
We also use a different notation to be consistent with
our previously introduced notations. Binary variable
Sits, is 1 if a facility of size I is constructed at loca-
tion j at the beginning of time period f, and stays
open until the end of period t,. Binary variable y;, ;,
is 1 if an existing facility of size I, located at j, is
reopened at the beginning of time period #, and stays
open until the end of period ¢,. We let f oty denote the
aggregated cost to construct a facility of size I at loca-
tion j at time period ¢,, its maintenance costs from the
beginning of period t, to the end of period t,, and the
costs to temporarily close it at the end of period £,. We
also let f Ity denote the same type of cost for reopen-
ing an ex15tmg facility of size I instead of building it.
These constants are computed as follows:

arl =fi+tci+(E—-H+1)F and
jilsz =cj+ ¢+ (B, —t + 1E.

Because the binary variables with two time indices
describe capacity blocks through time, we refer to this
formulation as the double time index block formulation
(CR-2I)

T R
(CR-2I) min IZZ 2.2 (.ﬁﬁlszsﬁs]ez +fi$r1r2yj?rlsz)

jel leL heT ta=tf

+ZZZZ&-}-udiexf;n} (18)

iel je] leL teT
st. Y Y %=1 Viel, ¥teT, (19)
je] leL

|T| t—1 -1

Z Yiu, = 22 Sitt, t,

t=1f=H

Vie],VleL,VteT, (20)

IT]
ZZ nge‘rlrz_l Vie], (21)
leL teT ta=H
¢ T
22D (S, +Yiny) <1
lel ty=1t,=t

Vje], VteT, (22)

t |T|

Z drrxz}ft <> Z Uiy (Sipe, + ymlrz

fh=1t=
Vije],VieL VteT, (23)
x>0 Viel,Vje],
VieL, VteT, (24)
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Sittyt, 0 Yitye, € {0,1} Vje], VlelL,
vt eT,Vt,eT. (25)

Constraints (19) are the demand constraints. Con-
straints (20) guarantee that a facility can only be
reopened if it has been constructed and temporarily
closed in an earlier period. Inequalities (21) impose
that a facility can be constructed only once through-
out the entire planning horizon. Constraints (22) guar-
antee that the intervals of open facilities (ie., the
capacity blocks) at the same location do not inter-
sect. In other words, a facility can only be reopened
if it is currently closed. In addition, these constraints
also require that only one facility size [ is selected at
each location. Constraints (23) are the facility capacity
constraints.

The SIs (8) can be adapted by replacing the right-
hand side by 3} _; 31 (sin,, + ¥j.1.). The ADCs (9)
can be used by replacing the left-hand side with
Zje} Zfef_ Z:l—l Zijl—t u}'f(sﬁtléz + Y, fz)'

Strengthening the CR-2I formulation. Constraints (20)
specify that, at each time period ¢, the capacity that
is reopened at this period cannot be greater than the
capacity that has been previously constructed. Con-
sider the following LP relaxation solution scenario,
where demands exist for three time periods t,, t,,
and t;. A facility construction variable is selected with
solution value 0.5, opening at the beginning of t,
and closing at the end of ¢, (ie., sy, = 0.5). Facil-
ity reopening variables are then selected twice, each
time with the same solution value of 0.5. The first
reopening spans the time interval from the beginning
of #, until the end of ¢, (i.e., ¥ji,;, = 0.5), whereas the
second reopening spans the time interval from the
beginning of #, until the end of ¢, (i.e., y;,, =0.5).
Separately, each of the last two reopenings is feasi-
ble in constraints (20). However, in total the solution
reopens more capacity than has been made available
through construction. To avoid such behavior in the
LP relaxation solution, we may replace constraints
(20) with the tighter set of constraints

t T t t
Zzy}'“__bsz Zsﬂflfg Vje}, VIEL, VteT. (26)

f=1t=t h=1t=t

We denote the formulation given by (18), (19), and
(21)-(26) as the CR-2I+ formulation.

4.1.3. Dominance Relationships. For any integer
LP model P, let P be the corresponding LP relaxation.
For any model P, we denote by v(P) its optimal value.
For the three models presented for the DMCFLP_CR,
the following relationships hold:

TueoreM 1. v(CR-GMC) = v(CR-1I) > v(CR-2D).

RIGHTS <

Proor. See Online Appendices A.1.1 (Theorem 4)
and A.1.2 (Theorem 5) (available as supplemental mate-
rial at http://dx.doi.org/10.1287 /trsc.2014.0575). O

If constraints (20) in the CR-2I formulation are
replaced by the strengthening constraints (26), all
three formulations are equally strong:

THEOREM 2. 0(CR-GMC) = v(CR-11) = v(CR-2[+).

Proor. See Online Appendix A.1.3 (Theorems 4
and 7). O

4.2. Capacity Expansion and Reduction

We consider models for the facility location prob-
lem with capacity expansion and reduction, the
DMCFLP_ER.

4.2.1. Single Time Index Flow Formulation. We
modify the CR-11 as follows. Binary variables s;;, now
represent the total capacity expansion. A variable s,
is 1 if the capacity of the facility located at j is
expanded by [ capacity levels at the beginning of
period f. Binary variable wy, is 1 if the capacity of a
facility located at j is reduced by I capacity levels at
the beginning of period t. We refer to this formulation
as the single time index flow formulation (ER-1I)

(ER-1I) min IZZZ(ﬁSﬁs + fiwi + Ejyim)

jel leL teT

+zzzzwmm4 @)

il je] leL teT

st. (1), (12)
Z ij}g = Z(ij.’[t—l] + 15}'” — ij”)

leL leL

Vje], VteT, (28)
Zy}-nfl Vie],VteT, (29)
leL
Ysu<1 Vje],VteT, (30)
leL
Ywy,<1 Vje], VteT, (31)
leL

x>0 Viel,Vje],
VieL, ¥teT, (32)
Ses W Yire €10, 1}
Vie],VieL VteT. (33)

The flow conservation constraints (28) manage the
size of the facilities throughout the planning periods.
Constraints (29)—(31), referred to as the limiting con-
straints, guarantee that the solution selects at most one
capacity level for each type of variable y, s, and w. If
the costs for facility maintenance, capacity expansion,
and capacity reduction include economies of scale,
these constraints are redundant, because the optimal
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solution will always choose a single capacity level: the
one with the lowest cost in relation to its capacity.

The model may be seen as an adaptation of the
relocation model of Wesolowsky and Truscott (1975),
where capacity is expanded or reduced instead of
relocated. It is also similar to the model presented
by Jacobsen (1990) and to simplifications of the mod-
els presented by Melo, Nickel, and Saldanha-da-Gama
(2006) and Behmardi and Lee (2008).

4.2.2. Double Time Index Block Formulations.
Dias, Captivo, and Climaco (2007) allow multiple ca-
pacity blocks of different sizes at the same location.
For each block, binary variables define the exact time
interval during which the block is active. This accu-
mulation of capacity blocks allows flexible capacity
expansion and reduction, as previously discussed and
exemplified in Figures 1(b) and 1(c). We extend this
formulation to model the DMCFLP_ER.

Binary variables y;, , indicate whether a capac-
ity block of size I is available at location j from the
beginning of time period #, until the end of time
period {,. Each capacity block may thus represent
economies of scale in the function of its own size.
However, in contrast to the ER-1I, the total capacity
available at a location can now be composed of sev-
eral capacity blocks. To consider economies of scale
on the entire capacity involved at each location, we
introduce additional binary variables y;;,, which are 1
if the total capacity summed over all capacity blocks
at location j available at time period ¢ equals . In the
same manner, we introduce variables s;, and wy, to
represent the total capacity that is added at a location
(i.e., the construction of capacity blocks) or removed
at a location (i.e., the closing of capacity blocks),
respectively. Finally, as in the previous models, x;;, is
the fraction of customer i’s demand that is served by
a facility of size I at location j. The double time index
block formulation (ER-2I) is given by

(ER-2I) 222 (fasp+ fuwp + Eyy)

je] leL teT

+ ZZ Z Zgz'jftdirx:'j.'r} (34)

iel jeJ leL teT

s.t. (11), (12), (29), (30), (31)
T
2 IS;‘H =22 Iy;mz

leL el ty=t
Vie],VteT, (35)

t-1
2 Iw}-“ =) Iy;?s](e—l)

lel leL t;=1
Vie],VteT, (36)

RIGHTS <

ZI}J’:H = Z Z Iy;fe b

lel {=1f=t

Vie],VteT, (37)
x,-}.-kzo Viel, Vje],
VieL VteT, (38)

Yinnr Sper Wi Yie €10, 1} V€T,
VlieL, vVt eT, Vt,eT. (39)

We adapt the demand and capacity constraints (11)
and (12), respectively, from the previous models. Con-
straints (35)-(37) are the linking constraints that set
the binary variables to benefit from economies of scale
in the function of the total capacity involved in each
operation and location. As for the ER-1I formulation,
we also add the limiting constraints (29)—(31) as intro-
duced in §4.2.1. The limiting constraints are necessary
to ensure that feasible solutions use only one active
variable of each type y, s, and w for each location
and time period. These constraints have also proved
to facilitate the solution process. We may also add the
SIs and the ADCs.

4.2.3. Dominance Relationships. For the DMCFLP
_ER, the ER-GMC formulation is stronger (strictly
stronger for some instances) than the other two
formulations:

Tueorem 3. v(ER-GMC) > v(ER-11) = v(ER-2]).

Proor. See Online Appendices A.2.2 (Theo-
rem 9) and A.2.1 (Theorem 10). O

5. Computational Experiments

In this section, computational results are reported to
illustrate the strength of the different formulations
and their performance when using a state-of-the-art
MIP solver to find optimal integer solutions. Com-
putational experiments were performed for the two
problem variants, DMCFLP_CR and DMCFLP_ER.

A large set of instances has been generated,
varying a set of key parameters that were found
to affect the difficulty of the problem. Instances
have been generated with the following dimensions
(I71/11]): (10/20), (10/50), (50/50), (50/100), (50/250),
(100/250), (100/500), and (100/1,000). The highest
capacity level at any facility, denoted by g, has been
selected such that g € {3, 5, 10}. Three different net-
works have been randomly generated on squares of
the following sizes: 300 km, 380 km, and 450 km.
We consider two different demand scenarios. In both
scenarios, the demand for each of the customers is
randomly generated and randomly distributed over
time. The two scenarios differ in their total demand
summed over all customers in each time period. In
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the first scenario (regular), the total demand is sim-
ilar in each time period. The second scenario (irreg-
ular) assumes that the total demand follows strong
variations along time and therefore varies for each
time period. Facility construction and operational
costs follow concave cost functions; i.e., they involve
economies of scale. All instances have also been gen-
erated with a second cost scenario in which the trans-
portation costs are five times higher. Instances have
been generated with |T| =12, which may be inter-
preted as a planning horizon of one year divided
into 12 months. This instance set contains a total of
288 instances. Note that we assume that the problem
instances do not contain initially existing facilities. See
Online Appendix B for a detailed description of the
parameters used to generate the instances and Online
Appendix C for details on the model sizes.

All mathematical models have been implemented
in C/C++ using CPLEX 12.6. The code has been com-
piled and executed on openSUSE 11.3. Each problem
instance has been run on a single Intel Xeon X5650
processor (2.67 GHz), limited to 24 GB of RAM.

5.1. Linear Relaxation Solution and
Integrality Gaps

We compared the different formulations for the two
problem variants by means of their LP relaxation
bounds as well as the time necessary to solve the
LP relaxations. All SIs have been added a priori. The
ADCs were not added to these models, since they do
not have any impact on the strength of the LP relax-
ation. For all instances, the LP relaxation was solved
to optimality. Table 1 shows the average times to solve
the LP relaxation, as well as the average integrality
gaps, for each problem dimension and each number
of maximum capacity levels gq. The optimal integer
solutions used to compute the integrality gaps were
obtained by running CPLEX for up to 24 hours.

As previously shown, the CR-1I, the CR-2I+, and
the CR-GMC formulations provide the same LP relax-
ation bound and thus the same integrality gap. How-
ever, the CR-GMC formulation solves the relaxation
in slightly shorter computing times than the CR-1I
and CR-2I+ formulations. For the DMCFLP_ER, the
ER-1I and ER-2I formulations provide the same inte-
grality gaps. Even though the computing times for the

Table 1 Average LP Relaxation Solution Time and Average Integrality Gaps for All Formulations

DMCFLP_CR DMCFLP_ER
ER-11 ER-2 ER-GMC
Time (sec)
Instance Integr. Time Integr. Time Inteqr. Time Integr.
q size 1l 21+ GMC gap (%) (sec) gap (%) (sec) gap (%) (sec) gap (%)
3 10/20 0.0 0.2 0.0 1.36 0.1 2.54 0.0 2.54 0.2 0.97
10/50 0.3 0.3 0.1 0.33 0.2 0.96 0.0 0.96 0.3 0.34
50/50 1.1 1.7 0.4 0.28 0.7 2.97 0.4 2.97 0.8 0.31
50/100 1.7 26 0.8 0.01 0.7 1.34 0.7 1.34 0.6 0.03
50/250 2.5 38 1.4 0.00 1.0 0.61 1.2 0.61 1.6 0.01
100/250 8.3 10.3 4.4 0.02 38 0.99 4.4 0.99 5.3 0.02
100/500 17.5 216 1.3 0.01 8.3 0.58 8.8 0.58 12.3 0.01
100/1,000 343 51.4 28.4 0.01 19.7 0.37 233 0.37 28.4 0.00
Avg all 8.2 11.5 5.9 0.25 43 1.29 4.8 1.29 6.2 0.21
5 10/20 0.3 0.5 0.1 2.33 0.3 5.19 0.0 519 0.3 1.86
10/50 0.6 1.0 0.4 0.80 0.2 2.08 0.1 2.08 0.7 0.68
50/50 38 5.8 2.8 0.93 1.3 6.60 1.5 6.60 3.0 1.15
50/100 6.5 8.4 2.8 0.18 1.9 2.79 2.4 2.79 35 0.19
50/250 7.1 8.8 32 0.01 26 117 2.8 117 38 0.01
100/250 26.6 24.3 10.8 0.03 8.3 1.93 9.4 1.93 15.1 0.03
100/500 39.8 47.6 18.8 0.01 16.5 1.12 15.3 112 23.8 0.01
100/1,000 74.6 85.5 43.6 0.01 334 0.70 46.9 0.70 49.8 0.00
Avg all 19.9 22.7 10.3 0.54 8.1 2.70 9.8 2.70 12.5 0.49
10 10/20 2.1 37 1.8 2.30 0.3 7.27 0.7 7.27 1.8 1.15
10/50 36 7.1 4.1 1.38 0.8 4.81 1.1 4.81 34 0.70
50/50 73.9 128.9 66.8 3.78 29.7 14.10 31.2 14.10 103.1 2.44
50/100 125.3 207.7 96.2 1.25 38.9 7.15 45.0 7.15 101.1 1.07
50/250 2123 163.3 140.3 0.44 47.9 3.22 48.2 3.22 101.6 0.42
100/250 1,126.1 1,011.4 940.0 0.53 274.2 4.73 285.7 473 829.2 0.47
100/500 647.7 451.3 236.9 0.06 122.5 2.48 152.5 2.46 303.7 0.09
100/1,000 325.6 421.3 138.9 0.01 116.6 1.47 140.0 1.47 158.2 0.01
Avg all 190.8 184.0 120.8 1.10 50.3 5.85 54.8 5.85 125.7 0.78
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ER-GMC formulation are higher than for the previous
two formulations, the ER-GMC formulation provides
a significantly smaller integrality gap.

5.2. CPLEX Optimization
Generic MIP solvers such as CPLEX incorporate sev-
eral heuristics to find good-quality solutions early in
the search tree and to improve the final solution qual-
ity. However, the use of such heuristics often leads to
an unforeseeable behavior and does not allow for a
proper comparison of different formulations for the
same problem. We therefore compare the performance
of the different formulations by considering two dif-
ferent optimization environments. The first one is a
traditional branch-and-cut environment, which aims
to test the formulations’ ability to prove optimal-
ity. We used the MIP branch-and-cut algorithm of
CPLEX 12.6 and turned off all heuristics (i.e., MIP
heuristics, Feasibility Pump, Local Branching, and
RINS). Instead, we used the solution value of the opti-
mal integer solution as an artificial upper bound. This
value is passed as a cut-off value in the branch-and-
cut tree. In the second optimization scenario, we used
CPLEX default settings; this reflects a typical use in
practice.

For all experiments, computation times were lim-
ited to six hours. Furthermore, all SIs were added

a priori to the models. Even though the number of
SIs may increase significantly, adding them a priori
(instead of as CPLEX wuser cuts or even not at all)
significantly facilitated the solution of the problems.
Experiments showed that, for most of the problem
instances, a large number of SIs were violated. CPLEX
thus spends much time identifying and adding vio-
lated SIs when treated as CPLEX user cuts. Although
redundant to the LP relaxation of the presented for-
mulations, the ADCs tended to slightly facilitate the
solution of the problems. Therefore, they also have
been added to the formulations. For some models,
the limiting constraints, as shown in §4.2, may not
change the set of feasible integer solutions but still
facilitate the solution of the problem. For example, for
the ER-1I formulation, the average solution time for
our test instances decreased by around 35%. The con-
straints are thus added to the models even if they are
redundant.

5.2.1. Optimization in the Branch-and-Cut Envi-
ronment. We now present computational results for
the branch-and-cut environment. CPLEX offers three
different search strategies (parameter MIPsearch): tra-
ditional branch and cut, dynamic search, and an auto-
matic choice based on internal rules. Our experiments
showed that the traditional branch-and-cut option

Table 2 CPLEX Branch-and-Cut Computing Times (in Seconds) for Instances Solved to Optimality by All Formulations for Each Problem

DMCFLP_CR DMCFLP_ER
Instance
q size No. of inst CR-11 CR-21+ CR-GMC No. of inst ER-1I ER-2I ER-GMC
3 10/20 12 0.9 1.3 1.2 12 0.3 1.4 0.3
10/50 12 0.5 5.1 0.4 12 0.5 1.7 0.5
50/50 11 6.3 7.8 2.3 12 4218 1,015.9 161.4
50/100 12 36 9.9 2.3 12 31 5.9 2.5
50/250 12 34 23.2 3.8 12 6.0 9.6 5.2
100/250 12 14.8 56.7 14.6 12 17.4 29.3 14.3
100/500 12 28.2 127.0 31.3 12 34.7 65.7 29.4
100/1,000 12 66.9 370.3 75.8 12 82.2 179.1 54.8
All 95 15.7 771 16.6 96 70.7 163.6 33.6
5 10/20 12 13.7 470.4 11.8 12 7.8 199.8 43
10/50 12 12.3 1,141.8 6.8 12 34 16.7 2.6
50/50 9 13.9 18.9 4.3 8 24.4 139.9 7.8
50/100 11 726 824.5 17.3 12 32.3 142.8 23.6
50/250 12 8.8 46.8 9.8 12 1.4 21.0 10.1
100/250 12 30.2 107.7 31.3 12 50.8 7.7 32.8
100/500 12 45.9 230.2 47.8 12 83.6 131.4 56.4
100/1,000 12 109.3 652.8 115.2 12 198.5 301.4 97.6
All 92 38.8 446.0 315 92 52.7 127.6 30.3
10 10/20 8 529.1 899.4 159.5 3 26.0 8,762.3 5.3
10/50 7 115.1 3,584.3 81.7 2 3.0 1,104.0 35
50/50 4 85.5 R 16.0 1 53.0 2,387.0 19.0
50/100 6 102.7 2,168.3 18.8 6 133.5 4,194.0 23.3
50/250 8 243.9 1,830.3 101.0 6 47.8 203.0 36.0
100/250 7 112.0 306.6 88.3 7 165.9 659.6 111.4
100/500 11 198.8 931.0 165.5 11 5316 2,131.2 284.7
100/1,000 5 136.6 1,226.6 155.4 12 887.2 2,291.4 313.0
All 56 207.2 1,403.7 108.0 48 3933 2,350.4 168.0
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Table 3 CPLEX Branch-and-Cut Optimality Gaps for Instances of the DMCFLP_CR Not Solved Within 6 Hours
CR-11 CR-21+ CR-GMC
Gap (%) Gap (%) Gap (%)
q Instance size No. of inst Avg Max No. ns Avg Max No. ns Avg Max No. ns
3 50/50 1 0.01 0.01 0 0.06 0.06 0 0.01 0.01 0
5 50/50 3 0.12 0.12 2 — — 3 0.01 0.01 2
50/100 1 0.01 0.01 0 0.02 0.02 0 0.01 0.01 0
10 10/20 4 0.05 0.13 1 0.63 0.63 3 0.12 0.31 0
10/50 5 0.01 0.01 2 0.45 0.45 4 0.01 0.01 2
50/50 8 0.10 0.10 7 0.01 0.01 7 0.01 0.01 6
50/100 6 0.01 0.01 5 — — 6 0.01 0.01 5
50/250 4 0.01 0.01 3 — — 4 0.00 0.01 2
100/250 5 0.04 0.04 4 — — 5 0.01 0.01 3
100/500 1 0.01 0.01 0 — — 1 0.01 0.01 0
100/1,000 7 0.00 0.00 0 — — 7 0.00 0.01 0
All 40 0.02 0.13 22 0.37 0.63 37 0.03 0.31 18

performed slightly better than the other two options.
All of the following results are therefore based on the
traditional branch-and-cut scheme. Furthermore, all
heuristics are turned off and the optimal integer solu-
tion value is passed to the solver as an upper bound
cut-off value.

For each problem, the results have been separated
into two groups: instances that have been solved to
optimality by all formulations and instances where
at least one formulation could not prove optimality
within the given time limit. Table 2 summarizes the
results for the instances that have been solved to opti-
mality within the given time limit of six hours by all
formulations for each problem. The table reports the
number of instances that have been solved to opti-
mality, as well as the average computation times to
solve the instances for each of the formulations. For
both problem variants, we observe that the 2I formu-
lations perform the worst. Between the 1I and GMC-
based formulations, the GMC-based models provide
substantially better results.

Tables 3 and 4 summarize the results for instances
where at least one of the formulations did not solve

the instances in the given time limit. The tables show
average and maximum optimality gaps as reported
by CPLEX, as well as the number of instances where
the optimal solution has not been found within the
given time limit (No. ns). Note that a positive opti-
mality gap indicates that an optimal solution (i.e., the
one with the cut-off value) has been found, but opti-
mality has not been proven. For g =3 and g =5, a few
instances with 50 facility locations have been found to
be difficult to solve. All other instances are for g = 10.
Again, the 2I formulations perform the worst, having
the highest number of instances where the optimal
solution has not been found. For both problem vari-
ants, the GMC finds more solutions than the 1I and
21 formulations. If the optimal solutions are found,
the optimality gaps are low for all three formulations.

5.2.2. Optimization with CPLEX Default Set-
tings. As shown in the previous section, the GMC-
based formulation outperforms the 1I and 2I for-
mulations for both problem variants in a traditional
branch-and-cut environment, allowing a clear com-
parison of the formulations without the interference
of heuristics. In practice, however, the objective is

Table 4 CPLEX Branch-and-Cut Optimality Gaps for Instances of the DMCFLP_ER Not Solved Within 6 Hours
ER-1 ER-2I ER-GMC
Gap (%) Gap (%) Gap (%)
q Instance size No. of inst Avg Max No. ns Avg Max No. ns Avg Max No. ns
5 50/50 4 0.01 0.01 3 — — 4 0.05 0.12 1
10 10/20 9 0.01 0.01 0 0.37 0.37 8 0.01 0.01 0
10/50 10 0.01 0.01 1 — — 10 0.01 0.01 0
50/50 11 0.01 0.01 8 — — 11 0.00 0.01 7
50/100 6 0.01 0.01 5 — — 6 0.00 0.01 4
50/250 6 0.01 0.01 2 — — 6 0.03 0.12 1
100/250 5 0.01 0.01 4 — — 5 0.01 0.01 3
100/500 1 — — 1 — — 1 0.01 0.01 0
All 48 0.01 0.01 21 0.37 0.37 47 0.01 0.12 15
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Table 5 Computing Times (in Seconds) Using CPLEX with Default Settings for Instances Solved to Optimality by All Formulations for Each Problem
DMCGFLP_CR DMGFLP_ER
q Instance size No. of inst CR-1I CR-21+ CR-GMC No. of inst ER-11 ER-2I ER-GMC
3 10/20 12 1.1 5.7 1.5 12 0.3 1.4 0.3
10/50 12 0.8 38 1.2 12 0.5 1.6 1.1
50/50 12 121.8 158.4 18.3 12 302.4 1,402.6 116.2
50/100 12 4.2 13.4 33 12 4.8 7.3 37
50/250 12 43 25.3 5.6 12 7.5 12.3 6.8
100/250 12 13.9 70.0 20.4 12 22.7 36.6 19.1
100/500 12 36.5 155.0 36.3 12 45.9 75.5 36.8
100/1,000 12 76.3 440.4 89.3 12 92.7 156.0 64.4
All 96 324 109.0 22.0 96 59.6 217 31.0
5 10/20 12 10.2 43.0 10.4 12 7.3 42.3 5.8
10/50 12 10.8 121.2 12.9 12 5.0 25.1 5.0
50/50 10 194.6 176.1 62.0 9 663.0 2,126.3 84.2
50/100 12 447.9 518.8 143.3 12 84.6 161.8 35.3
50/250 12 10.2 51.8 1.7 12 14.8 29.2 13.8
100/250 12 40.3 136.5 41.1 12 61.1 104.4 46.0
100/500 12 65.3 270.9 56.1 12 119.5 160.3 69.5
100/1,000 12 1281 741.3 143.4 12 192.8 331.8 126.8
All 94 117 259.2 60.1 93 126.8 316.1 47.1
10 10/20 8 59.8 903.8 52.9 8 55.0 2,808.0 10.9
10/50 7 119.3 1,033.6 108.3 8 180.9 4,310.8 28.6
50/50 5 184.4 61.6 44.4 5 392.0 2,946.4 67.0
50/100 7 7441 1,595.0 97.4 7 577.0 3,186.6 162.1
50/250 10 1,824.1 2,018.3 289.4 9 1,747.9 4,865.4 257.2
100/250 8 2,009.1 1,049.3 503.8 7 258.3 963.0 125.6
100/500 11 208.0 701.5 215.3 11 806.2 3,565.6 416.9
100/1,000 8 420.3 1,760.5 355.8 12 957.1 2,809.6 389.8
All 64 740.8 1,192.4 222.2 67 683.3 3,245.6 212.6

most often to find high-quality solutions in short com-
puting times. CPLEX incorporates several heuristics
to find good-quality solutions early in the search tree.
We now compare the different formulations using
CPLEX with default settings, making full use of the
heuristic capabilities of the MIP solver.
Computational experiments on the same set of test
instances indicate trends similar to those observed in
the experiments of §5.2.1. The results for the instances
that have been solved by all formulations for each
problem are summarized in Table 5. The table reports

the number of instances that have been solved to opti-
mality, as well as the average computing times to
solve the instances for each of the formulations. As
in the previous experiments, the 2I formulation per-
forms the worst. Between the 1I and the GMC-based
formulations, the GMC-based models are solved in
substantially shorter computing times.

Tables 6 and 7 summarize the results for instances
where at least one of the formulations did not solve the
instances in the time limit. The tables show average
and maximum optimality gaps as reported by CPLEX,

Table 6 Optimality Gaps Using CPLEX with Default Settings for Instances of the DMCFLP_CR Not Solved Within 6 Hours
CR-11 CR-21+ CR-GMC
Gap (%) Gap (%) Gap (%)

q Instance size No. of inst Avg Max No. ns Avg Max No. ns Avg Max No. ns
5 50/50 2 0.99 1.18 0 117 1.32 0 0.18 0.35 0
10 10/20 4 0.01 0.01 0 0.72 0.96 0 0.01 0.01 0
10/50 5 0.12 0.56 0 0.56 1.36 0 0.26 0.87 0
50/50 7 1.85 373 0 1.46 4.21 0 1.36 3.42 0
50/100 5 1.14 2.54 0 0.87 1.84 0 0.58 1.43 0
50/250 2 0.59 0.85 0 0.59 0.89 0 0.42 0.75 0
100/250 4 1.10 2.76 0 0.67 1.61 0 0.69 1.69 0
100/500 1 0.01 0.01 0 0.04 0.04 0 0.01 0.01 0
100/1,000 4 0.00 0.00 0 — — 4 0.00 0.01 0
All 32 0.78 373 0 0.86 4.21 4 0.54 3.42 0
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Table 7 Optimality Gaps Using CPLEX with Default Settings for Instances of the DMCFLP_ER Not Solved Within 6 Hours
ER-1 ER-2I ER-GMC
Gap (%) Gap (%) Gap (%)

q Instance size No. of inst Avg Max No. ns Avg Max No. ns Avg Max No. ns
5 50/50 3 0.50 1.00 0 1.01 1.33 0 0.00 0.00 0
10 10/20 4 0.01 0.01 0 1.60 2.76 0 0.01 0.01 0
10/50 4 0.01 0.01 0 1.22 1.65 0 0.01 0.01 0
50/50 7 1.43 3.23 0 312 5.08 1 0.55 1.30 0
50/100 5 0.83 1.47 0 1.47 2.45 0 0.45 1.09 0
50/250 3 0.32 0.74 0 0.60 1.06 0 0.12 0.35 0
100/250 5 0.52 1.22 0 2.05 6.85 0 0.34 1.11 0
100/500 1 0.12 0.12 0 0.55 0.55 0 0.01 0.01 0
All 29 0.62 3.23 0 1.78 6.85 1 0.29 1.30 0

as well as the number of instances where no feasible
solution has been found (No. ns). For g =5, the few
instances that have been found to be difficult to solve
are those with 50 facility locations. All other instances
are for g = 10. Again, the 2I formulations perform
the worst. For some of the instances, the formulation
did not find any feasible solution. The GMC formula-
tion performs similarly to the 1I formulation for the
DMCFLP_CR and presents slightly better results than
the 1I formulation for the DMCFLP_ER.

5.3. Closing and Reopening with Capacity
Expansion and Reduction

The two problem variants consider either facility
closing/reopening or capacity expansion/reduction.
Experiments have also been performed for a third
problem variant combining both features, referred to
as the DMCFLP_CRER. The problem is modeled using
the DFLPG by using the transition arcs for both prob-
lems, as shown in §3.2. Additionally, arcs are added
that represent combined decisions such as facility
reopening with subsequent capacity expansion (in the
same time period) and capacity reduction with subse-
quent facility closing. Alternatively, a specialized flow

(a) 10 candidate locations

(b) 50 candidate locations

formulation can be used with two types of flow con-
straints: one to manage the capacity of open facilities
and one to manage the capacity of closed facilities.
The advantage of the GMC model for this variant is
even more obvious than what was observed for the
DMCFLP_ER. We proved that the GMC-based model
provides a stronger LP relaxation than the specialized
flow formulation. Computationally, the average inte-
grality gap (for all instances with g = 10) improved
from 6.00% to 1.06% when using the GMC-based
model instead of the specialized formulation. In the
traditional branch-and-cut environment, using CPLEX
without heuristics and providing it with the optimal
integer solution value as a cut-off, the flow formu-
lation takes on average 1,820 seconds to solve the
instances of size g = 10, whereas the GMC-based for-
mulation solves the same instances in an average time
of only 206 seconds, about nine times faster. Using
CPLEX default settings, the dominance of the GMC-
based formulation is mainly preserved. The average
computation time improves from 1,924 to 313 seconds.

5.4. Solution Structure and Instance Properties
We now analyze the structure of the optimal or
near-optimal solutions. Figure 2 illustrates for each

(c) 100 candidate locations
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Figure 2

Structure of Optimal Solutions: Minimum, Average, and Maximum Number of Selected Facility Locations, as well as the Average Number

of Open Facilities per Time Period Throughout the Entire Planning Horizon
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(a) 10 candidate locations

(b) 50 candidate locations

(c) 100 candidate locations
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Figure 3 Structure of Optimal Solutions: Average Number of Facility Closings and Reopenings, as well as Gapacity Reductions and Expansions

problem variant and problem size (10, 50, and 100
candidate facility locations) the minimum (Min), max-
imum (Max), and average (Avg) number of selected
facility locations. Since a facility may not be available
in all of the subsequent time periods after its con-
struction, a second average value (Avg open) indicates
the average number of facilities that are available (i.e.,
having [ > 1) at each time period. The results are sur-
prisingly similar for the three problem variants CR,
ER, and CRER. On average, about half of the candi-
date locations have been selected. These facilities are
active only in about two-thirds of the planning hori-
zon. For the CR, this is done by closing a facility. For
the ER, the capacity is reduced to level 0.

Figure 3 shows different indicators of the solutions
structure: the average number of facility closings and
reopenings, as well as the average number of capac-
ity expansions and reductions. It can be observed
that the average values for certain indicators such as
capacity expansion and reduction are similar for the
three problem variants. Based on these results, one
may conclude that the main driver to adjust capacities
are high maintenance costs and therefore that high-
quality solutions tend to provide a total capacity that
only slightly exceeds the total demand.

However, an analysis of the solutions for smaller
instances reveals that the selected opening schedules
are very different for the three problem variants when
the original transportation costs are used. In con-
trast, the opening schedules are very similar when
the transportation costs are set five times higher.
Table 8 presents the impact of these instance prop-
erties on the solution structure. The table shows, for
each of the indicators, the average number of occur-
rences in instances with the original transportation
costs and in instances where the transportation costs
are five times higher. In the same way; it indicates the
number of occurrences in instances with regular and
irregular demand distribution. The impact of these
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instance properties has been found to be very simi-
lar for all three problem variants and is here exem-
plified for the DMCFLP_CRER, showing the aver-
age values over all instances. We can identify a clear
trend. Solutions for instances with original transporta-
tion costs involve only a few operations that adjust
the capacities throughout the planning horizon and
therefore tend to serve the demand from a similar
set of facility locations. Solutions for instances with
high transportation costs provide capacities that tend
to geographically follow the demand along time, con-
structing on average more than twice the number of
facilities and performing two to three times the oper-
ations that adjust capacities along time. In both cases
the maintenance costs are the same, so the motivating
factor to geographically shift capacity is given by high
transportation costs and the effort to bring capacities
closer to the demand. Regarding the demand distri-
bution, an irregular demand distribution results in
only slightly more capacity adjustments than a regu-
lar demand distribution.

Impact on problem difficulty. The instance character-
istics not only impact the solution structure but also
the difficulty of solving the problem. The comput-
ing time for instances with irregular total customer
demand is, on average, 30% lower than for instances
where the total customer demand is regular at each

Table 8 Impact of Instance Characteristics (Transportation Costs and
Demand Distribution) on the Solution Structure for the
DMCFLP_CRER

Transportation costs Demand distribution

# original 5 x higher regular irregular
Constructions 21.7 449 333 333
Closings 21.0 63.3 40.3 43.9
Reopenings 21.0 63.2 40.3 43.8
Capacity expansions 223 46.3 338 34.7
Capacity reductions 5.3 16.4 10.6 1.1
Avg. open facilities 16.2 28.4 23.2 21.3
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Table 9 Impact of Number of Time Periods in Problem Instances (g = 10) for the CRER-GMC Formulation when Using CPLEX with Default Settings

TI=6 T|=8 |T|=10 T|=12 T|=14
Instance size Gap (%) Time (sec) Gap (%) Time (sec) Gap (%) Time (sec) Gap (%) Time (sec) Gap (%) Time (sec)
10/20 0.00 112.1 0.01 180.8 0.01 140.0 0.01 940.7 0.01 2,569.4
10/50 0.00 73.0 0.01 129.1 0.01 3024 0.01 1,822.0 0.06 6,203.6
50/50 017 7,842.3 0.25 8,818.4 0.45 10,820.0 1.23 10,913.3 0.96 12,800.9
50/100 0.02 2,126.8 0.11 4,107.6 0.17 4,201.6 0.56 7,582.8 0.40 9,225.2
50/250 0.01 446.0 0.02 2,002.3 0.01 1,945.0 0.14 7,304.1 0.12 5,655.8
100/250 0.05 2,883.7 0.08 5,516.9 0.14 6,940.4 0.57 8,899.3 0.31 9,481.0
100/500 0.00 339.3 0.00 988.9 0.00 940.8 0.01 2,687.5 0.01 2,571.3
100/1,000 0.00 4145 0.00 463.9 0.00 538.4 0.00 690.2 0.00 549.1
All 0.03 1,779.7 0.06 2,776.0 0.10 3,228.6 0.19 4,201.8 0.23 6,132.0

Downloaded from informs.org by [132.204.243.250] on 11 September 2017, at 10:39 . For personal use only, all rights reserved.

time period. In contrast, the ratio between transporta-
tion and facility construction costs has a much larger
impact. Instances where the transportation costs are
five times higher than the original costs are, on aver-
age, solved around 60 times faster. This is directly
linked to the integrality gap for those instances, which
is significantly lower if the ratio between facility con-
struction and transportation costs is not close to 1.

Finally, we also analyzed the impact of the length
of the planning horizon in the problem instances,
using CPLEX with its default settings. For this pur-
pose, instances have also been generated with differ-
ent numbers of time periods such that |T| € {6, 8, 10,
12,14}. Table 9 summarizes the average computa-
tion times and average optimality gaps for the CRER-
GMC formulation. The computational results are
presented for five different numbers of time periods
|T|: 6,8, 10, 12, and 14. The results are very consistent,
showing that the difficulty of the problems increases
proportionally to the number of time periods. For the
CRER-1I formulation, a similar trend was observed.
However, the CRER-1I was clearly outperformed by
the CRER-GMC for all tested lengths of the planning
horizon.

6. Conclusions and Future Research

We have introduced a new general facility loca-
tion problem that unifies several existing multiperiod
facility location problems. We showed the flexibility
of this generalization by focusing on two problem
variants: facility closing and reopening and capac-
ity expansion and reduction. In addition, we also
reported results on a variant that combines both of
these features. For the first two cases, we derived
specialized models based on two well known for-
mulation approaches. We formally proved that, even
though our model is more general, it provides LP
relaxation bounds as strong as the other formulations
for the case of facility closing/reopening and stronger
LP relaxation bounds than the formulations for the
other two cases. Computational experiments showed
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that, for the two variants involving capacity expan-
sion and reduction, the integrality gap of our model is
up to seven times smaller than the integrality gaps of
the specialized formulations. When assessing the per-
formance of the models in a traditional branch-and-
cut environment, the GMC-based models solved the
instances, on average, up to nine times faster than the
specialized formulations. Using CPLEX default set-
tings to solve the problem, the GMC-based models
are, on average, up to six times faster.

The general model may also be used to model
other problem variants not addressed in this work,
e.g., the closing and reopening model of Chardaire,
Sutter, and Costa (1996) or the dynamic location prob-
lem of Sridharan (1995). In addition, problem vari-
ants that involve capacity changes may benefit from
the proposed modeling technique to strengthen the
existing models. Problems such as those presented by
Shulman (1991) and Correia and Captivo (2003) can
be modeled by the DFLPG when adding individual
constraints such as minimum production bounds for
the facilities. Finally, as the general model is already
very strong, it may also be an ideal candidate for
decomposition techniques such as Lagrangian relax-
ation to find good-quality solutions in short compu-
tation times.
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